

FUSION OF REMOTE SENSING DATASET WITH HETEROGENEOUS SPATIO-TEMPORAL RESOLUTION: SIMULATION OF SENTINEL-2 TIME SERIES OF VEGETATION INDEXES FOR AGRICULTURAL MONITORING

G. Candiani, G. Bordogna, G. Manfron, M. Boschetti, M. Pepe Consiglio Nazionale delle Ricerche - IREA, via Bassini 15, 20133 Milano <u>candiani.g@irea.cnr.it</u>

1. Goal of the Work

Agricultural monitoring needs updated information on both type and dynamic of cultivated varieties. Thus, a suitable monitoring system, exploiting remote sensing capabilities, requires data featuring both high spatial resolution and high revisiting time. Currently, only heterogeneous data – in terms of spatial and temporal resolutions – are available for operational monitoring purposes. Typically, high spatial resolution (HR) data (< 30 m) feature low revisiting time (16 to 26 days) while, daily data are available at low or very low spatial resolution (LR) (250-1000 m).

In this study, we propose an approach to perform the fusion of NDVI images derived from the available heterogeneous satellite dataset, in order to generate new NDVI time series at desired timestamps, characterized by better spatio-temporal resolution.

2. Dataset

The heterogeneous satellite dataset used in this study is represented by **20 SPOT4(Take5)** scenes and **21 MODIS** (MOD09A1) images, acquired over the **Provence region** from February, 3rd 2013 to June, 18th 2013.

3. Proposed Fusion Procedure

NDVI values have been calculated for both **S4(T5)** and **MODIS** dataset. **NDVI** dataset retrieved **from S4(T5)** has then been **divided into training and testing** dataset sampling each scenes with a frequency of 10 days.

1. Definition of desired Output Timestamps: $t_1, t_2, ..., t_n$

SERIES	SENSOR	# IMAGES	SPAT. RES.	FREQUENCY
H _{input}	S4(T5)	12	20 <i>m</i>	10 days
H _{target}	S4(T5)	8	20 <i>m</i>	10 days
L _{input}	MODIS	21	500 <i>m</i>	8 days

2. Definition of weights for input images at output Timestamps

For each timestamp *t*, the weight of each input image H_i and L_i acquired before t_o and after t_E is *Null*, otherwise it is $\mu_t(t_H)$ and $\mu_t(t_L)$

3. Pixel level Fusion

At each timestamp *t*, the fusion is a weighted average of input images within t_0 and t_E .

4. Results

NDVI images calculated from S4(T5) and MODIS dataset have been fused together to reconstruct **NDVI time series**.

Several tests have been performed with different setting configurations:

- Changing the number of images involved in the fusion at each timestamp;
- Using different weight functions (TVW or IDW with different power values).

In particular, for the computation of the TVW tests, t_o and t_e have been set to -32 days and 32 days, respectively.

The **performances** of the different configurations are

Example of fusion results for 02/28/2013

resumed in the table below.

IDW1	IDW2	IDW3	Target (S4(T5))			
			Ne le			
EXAMPLE OF PIXEL TEN	EXAMPLE OF PIXEL TEMPORAL PROFILE		02/28/2013 SCATTER PLOT			
8000		Target				

Statistics (Simulated vs Target)							
Method	# HR/LR	р	R	RMSE	Accuracy		
TVW1	1	-	0.815	0.169	0.933		
TVW2	2	-	0.853	0.153	0.935		
TVW3	3	-	0.863	0.149	0.937		
TVW4	4	-	0.862	0.151	0.935		
IDW1	3	1	0.806	0.181	0.926		
IDW2	3	2	0.727	0.226	0.912		
IDW3	3	3	0.686	0.249	0.904		

Acknowledgements

This research work has been done within the SPACE4AGRI project (2013-2015) jointly funded by CNR and Regione Lombardia